
15
The Open Graph Drawing

Framework (OGDF)

Markus Chimani 1

Friedrich-Schiller-Universitaet Jena

Carsten Gutwenger
TU Dortmund

Michael Jünger
University of Cologne

Gunnar W. Klau
Centrum Wiskunde & Informatica

Karsten Klein
TU Dortmund

Petra Mutzel
TU Dortmund

15.1 Introduction . 1
The History of the OGDF • Outline

15.2 Major Design Concepts . 2
Modularization • Self-contained and Portable Source Code

15.3 General Algorithms and Data Structures 4
Augmentation and Subgraph Algorithms • Graph Decomposition •

Planarity and Planarization

15.4 Graph Drawing Algorithms . 8
Planar Drawing Algorithms • Hierarchical Drawing Algorithms •

Energy-based Drawing Algorithms • Drawing Clustered Graphs

15.5 Success Stories . 21
SPQR-Trees • Exact Crossing Minimization • Upward Graph Drawing

Acknowledgement . 23

15.1 Introduction

We present the Open Graph Drawing Framework (OGDF), a C++ library of algorithms
and data structures for graph drawing. The ultimate goal of the OGDF is to help bridge
the gap between theory and practice in the field of automatic graph drawing. The library
offers a wide variety of algorithms and data structures, some of them requiring complex
and involved implementations, e.g., algorithms for planarity testing and planarization, or
data structures for graph decomposition. A substantial part of these algorithms and data
structures are building blocks of graph drawing algorithms, and the OGDF aims at pro-
viding such functionality in a reusable form, thus also providing a powerful platform for
implementing new algorithms.

The OGDF can be obtained from its website at:

http://www.ogdf.net

1Markus Chimani was funded via a juniorprofessorship by the Carl-Zeiss-Foundation.

0-8493-8597-0/01/$0.00+$1.50
c⃝ 2004 by CRC Press, LLC 1

Mobile User
This ideas can be used to make PlantUML diagrams nicer

https://forum.plantuml.net/4842/graphviz-is-not-good-enough

Mobile User

2 CHAPTER 15. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

This website also provides further information like tutorials, examples, contact information,
and links to related projects. The source code is available under the GNU General Public
License (GPL v2 and v3).

15.1.1 The History of the OGDF

Back in 1996, the development of the AGD library [AGMN97] (Algorithms for Graph Draw-
ing) started at the Max-Planck Institute for Computer Science in Saarbrücken, Germany,
originating from the DFG-funded project Design, Analysis, Implementation, and Evaluation
of Graph Drawing Algorithms. The project later moved to Vienna University of Technology.
AGD was designed as a C++ library of algorithms for graph drawing, based on the LEDA
library [MN99] of efficient data structures and algorithms.

In 1999, a new branch of the library was developed as an internal project at the oreas
GmbH and the research center caesar. The main goal was to have a code basis that could
be built independently of any other libraries. This resulted in a new design and complete
rewrite by starting from scratch, thereby concentrating on the strengths of the library,
i.e., planarity and orthogonal layout, and implementing a wealth of required basic data
structures and algorithms.

Later on, this internal project was renamed to OGDF and made open source under
the GPL. The OGDF is currently maintained and further developed by researchers at the
Universities of Dortmund, Cologne, and Jena.

15.1.2 Outline

After introducing the major design concepts and goals in Section 15.2, we dedicate two sec-
tions to the algorithms and data structures contained in the library. Section 15.3 introduces
general graph algorithms and related data structures, and Section 15.4 focuses on drawing
algorithms and layout styles. Finally, we conclude this chapter with selected success stories
in Section 15.5.

15.2 Major Design Concepts

Many sophisticated graph drawing algorithms build upon complex data structures and algo-
rithms, thus making new implementations from scratch cumbersome and time-consuming.
Obviously, graph drawing libraries can ease the implementation of new algorithms a lot.
E.g., the AGD library was very popular in the past, since it covered a wide range of graph
drawing algorithms and—together with the LEDA library—data structures. However, the
lack of publicly available source-code restricted the portability and extendability, not to
mention the understanding of the particular implementations. Other currently available
graph drawing libraries suffer from similar problems, or are even only commercially avail-
able or limited to some particular graph layout methods.

Our goals for the OGDF were to transfer essential design concepts of AGD and to over-
come AGD’s main deficiencies for use in academic research. Our main design concepts and
goals are the following:

• Provide a wide range of graph drawing algorithms that allow a user to reuse and
replace particular algorithm phases by using a dedicated module mechanism.

• Include sophisticated data structures that are commonly used in graph drawing,
equipped with rich public interfaces.

15.2. MAJOR DESIGN CONCEPTS 3

• A self-contained source code that does not require additional libraries (except
for some optional LP-/ILP-based algorithms).

• Portable C++-code that supports the most important compilers for the major
operating systems (Linux, MacOS, and Windows) and that is available under an
open source license (GPL).

15.2.1 Modularization

In the OGDF, an algorithm (e.g., a graph drawing algorithm or an algorithm that can be
used as building block for graph drawing algorithms) is represented as a class derived from a
base class defining its interface. Such algorithm classes are also calledmodules and their base
classesmodule types. E.g., general graph layout algorithms are derived from the module type
LayoutModule, which defines as interface a call method whose parameters provide all the
relevant information for the layout algorithm: the graph structure (Graph) and its graphical
representation like node sizes and coordinates (GraphAttributes)1. The algorithm then
obtains this information and stores the computed layout in the GraphAttributes.

Using common interface classes for algorithms allows us to make algorithms exchangeable.
We can write an implementation that utilizes several modules, but each module is used only
through the interface defined by its module type. Then, we can exchange a module by a
different module implementing the same module type. The OGDF provides a mechanism
called module options that even makes it possible to exchange modules at runtime. Suppose
an algorithm A defines a module option M of a certain type T representing a particular
phase of the algorithm, and adds a set-method for this option. A module option is simply
a pointer to an instance of type T , which is set to a useful default value in A’s constructor
and called for executing this particular phase of the algorithm. Using the set-method, this
implementation can be changed to any implementation implementing the module type T ,
even new implementations not contained in the OGDF itself.

Module options are the key concept for modularizing algorithm frameworks, thus allowing
users to experiment with different implementations for particular phases of the algorithm,
or to evaluate new implementations for phases without having to implement the whole
framework from scratch. Figure 15.1 shows how module options are used in Sugiyama-

Layout. In this case, SugiyamaLayout is a framework with three customizable phases
(ranking, 2-layer crossing minimization, and layout), and the constructor takes care of
setting useful initial implementations for each phase. Using a different implementation of,
e.g., the crossing minimization step is simple:

SugiyamaLayout sugi;

sugi.setCrossMin(new MedianHeuristic);

In Section 15.4, we will illustrate the main drawing frameworks available in the OGDF
using class diagrams, thereby showing the interconnections between the various classes in
the OGDF.

15.2.2 Self-contained and Portable Source Code

1More precisely, the call method has only one parameter, the GraphAttributes, which allows us to get
a reference to the Graph itself.

4 CHAPTER 15. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

class SugiyamaLayout : public LayoutModule

{

protected:

ModuleOption<RankingModule> m_ranking;

ModuleOption<TwoLayerCrossMin> m_crossMin;

ModuleOption<HierarchyLayoutModule> m_layout;

...

public:

SugiyamaLayout() {

m_ranking .set(new LongestPathRanking);

m_crossMin.set(new BarycenterHeuristic);

m_layout .set(new FastHierarchyLayout);

...

}

void setRanking(RankingModule *pRanking) { m_ranking.set(pRanking); }

void setCrossMin(TwoLayerCrossMin *pCrossMin) { m_crossMin.set(pCrossMin); }

void setLayout(HierarchyLayoutModule *pLayout) { m_layout.set(pLayout); }

...

};

Figure 15.1 Excerpt from the declaration of SugiyamaLayout demonstrating the use of
module options.

It was important for us to create a library that runs on all important systems, and whose core
part can be built without installing any further libraries. Therefore, all required basic data
structures are contained in the library, and only a few modules based on linear programming
require additional libraries: COIN-OR [Mar10] as LP-solver and ABACUS [JT00] as branch-
and-cut framework.

For reasons of portability and generality, the library provides only the drawing algorithms
themselves and not any graphical display elements. Such graphical display would force us
to use very system-dependent GUI or drawing frameworks, or to have the whole library
based on some cross-platform toolkit. Instead of this, the OGDF simply computes basic
layout information like coordinates of nodes or bend points, and an application that uses
the OGDF can create the required graphical display by using the GUI framework of its
choice.

For creating graphics in common image formats, the OGDF project provides the com-
mand line utility gml2pic2. This utility converts graph layouts stored in GML or OGML file
formats into images in PNG, JPEG, TIFF, SVG, EPS, or PDF format. We recommend to
use the new OGML (Open Graph Markup Language) file format, since it offers a wide range
of clearly specified formatting options. Hence, it is easy to save graph layouts in OGML
format using the OGDF, and then apply gml2pic for creating high-quality graphics. All
graph layouts in this chapter have been created with gml2pic. Figures 15.9 and 15.11, e.g.,
demonstrate the automatic creation of Bézier curves from ordinary polylines.

15.3 General Algorithms and Data Structures

2available at http://www.ogdf.net/doku.php/project:gml2pic

15.3. GENERAL ALGORITHMS AND DATA STRUCTURES 5

The OGDF contains many basic data structures like arrays, lists, hashing tables, and prior-
ity queues, as well as fundamental data structures for the representation of graphs (Graph,
ClusterGraph, and associative arrays for nodes, edges, etc.). Many basic graph algorithms
can be found in basic/simple graph alg.h, e.g., functions dealing with parallel edges, con-
nectivity, biconnectivity, and acyclicity. In this section, we focus on the more sophisticated
algorithms and data structures in the OGDF.

15.3.1 Augmentation and Subgraph Algorithms

Augmentation Algorithms. Several augmentation modules are currently available in
the library for adding edges to a graph to achieve biconnectivity. This can be done either
by disregarding the planarity of the graph or by taking care not to introduce non-planar
subgraphs.

Augmenting a planar graph to a planar biconnected graph by adding the minimum num-
ber of edges is an NP-hard optimization problem. It has been introduced by Kant and Bod-
laender [KB91], who also presented a simple 2-approximation algorithm for the problem.
They also claimed to have a 3/2-approximation algorithm, but Fialko and Mutzel [FM98]
have shown that this algorithm is erroneous and cannot be corrected. However, their sug-
gested 5/3-approximation algorithm was shown to approximate the optimal solution by
a factor of 2, only (see [GMZ09a]). Experiments show that the Fialko-Mutzel algorithm
performs very good in practice. The module PlanarAugmentation implements the Fialko-
Mutzel algorithm, which proceeds roughly as follows. The biconnected components of a
graph induce a so-called block tree whose nodes are the cut vertices and blocks of the graph.
The algorithm first constructs a block tree T from the given graph and then iteratively adds
edges between blocks of degree one in T . Experiments on a set of benchmark graphs have
shown that in about 96% of all the cases the approximation algorithm finds the optimal
solution to the planar augmentation problem [FM98].

In addition, the OGDF contains the module DfsMakeBiconnected. The underlying algo-
rithm uses depth-first search and adds a new edge whenever a cut vertex is discovered. If
the input graph is planar, the augmented graph also remains planar. However, in general,
this approach adds a significantly higher number of edges than the PlanarAugmentation

module.

A special variant of the planar augmentation problem is solved by the PlanarAugmen-

tationFix module. Here, a planar graph with a fixed planar embedding is given, and
this embedding shall be extended such that the graph becomes biconnected. PlanarAug-

mentationFix implements the optimal, linear-time algorithm by Gutwenger, Mutzel, and
Zey [GMZ09b].

Acyclic Subgraphs. Two modules are available to compute acyclic subgraphs of a di-
graph G = (V,A). These modules determine a feedback arc set F ⊂ A of G, i.e., if
G contains no self-loops, an acyclic digraph is obtained by reversing all the arcs in F .
DfsAcyclicSubgraph computes an acyclic subgraph in linear time by removing all back
arcs in a depth-first-search tree of G. On the other hand, GreedyCycleRemoval imple-
ments the linear-time greedy algorithm by Eades and Lin [EL95]. If G is connected and has
no two-cycles, the algorithm guarantees that the number of non-feedback arcs is at least
|A|/2− |V |/6.
The OGDF provides further modules for the computation of planar subgraphs. These

are covered in the context of graph planarization; see Section 15.3.3.

6 CHAPTER 15. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

15.3.2 Graph Decomposition

Besides the basic algorithm for computing the biconnected components of a graph [Tar72,
HT73b] (function biconnectedComponents in basic/simple gaph alg.h), the OGDF pro-
vides further powerful data structures for graph decomposition. BCTree represents the de-
composition of a graph into its biconnected components as a BC-tree and StaticSPQRTree

represents the decomposition of a biconnected graph into its triconnected components as
an SPQR-tree [DT89, DT96]. An SPQR-tree is a tree whose nodes are associated with
the triconnected components (called the skeletons of the tree nodes) of the graph: S-nodes
correspond to serial structures, P-nodes to parallel structures, and R-nodes to simple, tri-
connected structures; Q-nodes simply correspond to the edges in the graph and are hence
not required by an implementation. Both data structures can be build in linear time; the
latter constructs the SPQR-tree by applying the corrected version [GM01] of Hopcroft and
Tarjan’s algorithm [HT73a] for decomposing a graph into its triconnected components. The
OGDF is one of the few places where one can find a correct implementation of this complex
and involved algorithm (to the best of our knowledge, AGD was the first library providing
such an implementation).
BC- and SPQR-trees are important data structures for many graph algorithms dealing

with planar graphs, since they efficiently encode all planar embeddings of a planar graph.
Notice that a planar graph might have exponentially many planar embeddings. The em-
beddings of the skeleton graphs of an SPQR-tree induce a unique embedding of the original
graph. StaticPlanarSPQRTree is a specialized version of StaticSPQRTree with additional
support for planar graphs. It provides basic operations for changing the currently repre-
sented embedding of the graph, like flipping the skeleton of an R-node and permuting the
order of the edges in the skeleton of a P-node, and a method for embedding the graph
according to the embeddings of the skeletons.
In addition to the static versions of BC- and SPQR-trees, the OGDF also contains effi-

cient implementations of dynamic BC- and SPQR-trees. The supported update operations
are insertion of nodes and edges. DynamicBCTree implements the update operations as
described by Westbrook and Tarjan [WT92], and DynamicSPQRTree as described by Di
Battista and Tamassia [DT96].

15.3.3 Planarity and Planarization

The OGDF provides a unique collection of algorithms for planar graphs, including algo-
rithms for planarity testing and planar embedding, computation of planar subgraphs, and
edge reinsertion. These algorithms can be combined using the planarization approach,
yielding excellent crossing minimization heuristics. The planarization approach for crossing
minimization is realized by the module SubgraphPlanarizer, and the two layout algorithms
PlanarizationLayout and PlanarizationGridLayout implement a complete framework
for planarization and layout. Figure 15.2 gives an overview of the OGDF’s planarization
framework for graph layout, illustrating the interconnection between the modules involved;
the various implementations for EmbedderModule are shown in Figure 15.3. An in-depth
description of this framework can be found in [Gut10].

Planarity Testing and Embedding. The OGDF provides two algorithms for planarity
testing. PlanarModule implements the node-addition algorithm [LEC67, BL76, CNAO85])
based on PQ-trees, and BoyerMyrvold implements the edge-addition algorithm by Boyer
and Myrvold [BM04] which is based on depth-first search. Both modules can also compute
a planar embedding of the graph.
However, for many graphs it is highly beneficial for a graph layout algorithm not to use

Mobile User

15.3. GENERAL ALGORITHMS AND DATA STRUCTURES 7

LayoutModule

PlanarGridLayoutModule

GridLayoutPlanRepModule

<no_crossings>
MixedModelLayout

augmenter

shellingOrder

embedder

crossingsBeau fier

EmbedderModule

MixedModelCrossingsBeau fierModule

MMCBBase

MMDummyCrossingsBeau fier

MMCBDoubleGrid

MMCBLocalStretch

<no_crossings>
Planariza onGridLayout

subgraph

inserter

planarLayouter

packer
<no_crossings>

Planariza onLayout

subgraph

inserter

planarLayouter

embedder

packer

TileToRowsCCPacker

CCLayoutPackModule

GridLayoutModule

MaximalPlanarSubgraph

FastPlanarSubgraph

SubgraphModule

VariableEmbeddingInserter

FixedEmbeddingInserter

EdgeInser onModule

OrthoLayout

KandinskyLayout

LayoutPlanRepModule

Figure 15.2 The Planarization framework for graph layout in the OGDF library.

8 CHAPTER 15. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

just any embedding but an embedding that optimizes certain criteria. The OGDF contains
such embedding algorithms which optimize criteria like a large external face or a small
block-nesting depth (which is a measure for the topological nesting of the biconnected com-
ponents in the embedding). EmbedderMinDepthPiTa implements the algorithm by Pizzonia
and Tamassia [PT00], which minimizes the block-nesting depth for fixed embeddings of the
blocks. On the other hand, EmbedderMinDepth minimizes the block-nesting depth with-
out any restrictions, and EmbedderMaxFace maximizes the size of the external face; these
two modules implement algorithms presented by Gutwenger and Mutzel [GM03]. Notice
that just maximizing the external face still leaves a lot of freedom for embedding inner
faces. Therefore, Kerkhof [Ker07] developed an extension of EmbedderMaxFace, realized
by EmbedderMaxFaceLayers, which considers the layers of the embedding and the sizes of
their boundaries. Here, layer i is formed by the faces with distance i to the external face
in the dual graph, and the boundary Bi of layer i is roughly given by the edges shared by
layers i and i + 1. Then, the algorithm computes an embedding such that |B0|, |B1|, . . .
is lexicographically maximal. There are also combinations of these algorithms, realized by
EmbedderMinDepthMaxFace and EmbedderMinDepthMaxFaceLayers.

Upward Planarity Testing. Although the general upward planarity testing problem is
NP-complete [GT01], the problem can be solved efficiently for digraphs with only a single
source, also called sT -digraphs. The OGDF provides a linear-time implementation of the
sophisticated algorithm by Bertolazzi et al. [BDMT98], which is based on decomposing the
underlying undirected graph using SPQR-trees.

Planar Subgraphs. The module FastPlanarSubgraph computes a planar subgraph of
an input graph G by deleting a set of edges using the PQ-tree data structure [JLM98].
The algorithm is similar to the one by Jayakumar et al. [JTS89] and is one of the best
heuristics for the NP-hard maximum planar subgraph problem that asks for the smallest
set of edges whose removal leads to a planar graph. The heuristic proceeds in a similar
manner as PQ-tree-based planarity testing: First, it constructs an s-t-numbering and then
adds nodes subsequently to the empty graph in this order while maintaining the PQ-tree
data structure. The implementation also provides an option runs which runs the algorithm
multiple times with randomly chosen (s, t)-edges and then takes the best result. The module
MaximumPlanarSubgraph solves the maximum planar subgraph problem exactly by applying
a branch-and-cut approach.

Edge Reinsertion. Reinserting edges into a planar auxiliary graph such as to introduce
as few crossings as possible is an important phase within the planarization approach. The
OGDF offers two modules for this task: FixedEmbeddingInserter is the standard ap-
proach, which reinserts edges iteratively by looking for shortest paths in the dual graph; on
the other hand, VariableEmbeddingInserter proceeds similarly but solves the subproblem
of inserting one edge with the minimum number of crossings under a variable embedding
setting to optimality [GMW05]. To achieve this, it applies BC- and SPQR-trees which can
encode all planar embeddings of a graph.

15.4 Graph Drawing Algorithms

Graph drawing algorithms form the heart of the library. Traditionally, the focus of the
OGDF is on planar drawing algorithms and the planarization approach. However, a large
number of drawing algorithms like energy-based layout algorithms or hierarchical drawing
methods have been added. Today, the OGDF provides flexible frameworks with inter-
changeable modules for various drawing paradigms, including the planarization approach

15.4. GRAPH DRAWING ALGORITHMS 9

LayoutModule

PlanarGridLayoutModule

ShellingOrderModule

<no_crossings>

DfsMakeBiconnected

PlanarAugmenta on

Augmenta onModule

GridLayoutModule

TriconnectedShellingOrder

BiconnectedShellingOrder

PlanarStraightLayout

augmenter

shellingOrder

PlanarDrawLayout

augmenter

shellingOrder

GridLayoutPlanRepModule

<no_crossings>
MixedModelLayout

augmenter

shellingOrder

crossingsBeau fier

embedder EmbedderModule

MixedModelCrossingsBeau fierModule

MMCBBase

MMDummyCrossingsBeau fier

MMCBDoubleGrid

MMCBLocalStretch

SimpleEmbedder

EmbedderMinDepthPiTa

EmbedderMinDepth

EmbedderMaxFace

EmbedderMinDepthMaxFace

EmbedderMaxFaceLayers

EmbedderMinDepthMaxFaceLayers

Figure 15.3 Planar graph drawing in the OGDF library.

for drawing general, non-planar graphs, the Sugiyama framework for drawing hierarchical
graphs, and the multilevel-mixer, which is a general framework for multilevel, energy-based
graph layout.

15.4.1 Planar Drawing Algorithms

The planar layout algorithms can be divided into those that compute straight-line layouts
and those that produce drawings with bends along the edges, in particular orthogonal
layouts. Figure 15.3 gives an overview of the available layout algorithms and their module
options; the orthogonal layouts (OrthoLayout and KandinskyLayout) are not covered in
this figure, since they are only used within the planarization framework (see Figure 15.2).

Straight-Line Layouts. The class PlanarStraightLayout implements planar straight-
line drawing algorithms based on a shelling (or canonical) order of the nodes. This order
determines the order in which the nodes are placed by the algorithm. PlanarStraight-

Layout provides a module option shellingOrder for selecting the shelling order used by
the algorithm. There are two implementations in the OGDF: Using the Triconnected-

ShellingOrder realizes the algorithm by Kant [Kan96], which draws triconnected pla-
nar graphs such that all internal faces are represented as convex polygons; using the Bi-

connectedShellingOrder realizes the relaxed variant by Gutwenger and Mutzel [GM97]
for biconnected graphs. To make the drawing algorithm more generally applicable, it pro-
vides the additional module option augmenter for setting an augmentation module that is
called as a preprocessing step. This augmentation module must ensure that the graph has
the required connectivity when computing the shelling order. In all cases, the algorithm

10 CHAPTER 15. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

Figure 15.4 A triconnected planar graph drawn with PlanarStraightLayout, Planar-
DrawLayout, and MixedModelLayout (from left to right).

Figure 15.5 A biconnected planar graph drawn with PlanarStraightLayout, Planar-
DrawLayout, and MixedModelLayout (from left to right).

guarantees to produce a drawing on a (2n − 4) × (n − 2) grid, where n ≥ 3 is the number
of nodes in the graph.

An improved version of PlanarStraightLayout is PlanarDrawLayout. It provides the
same module options but implements a slightly modified drawing algorithm, which guaran-
tees a smaller grid size of (n−2)×(n−2). Some sample drawings of a tri- and a biconnected
graph are shown in Figures 15.4 and 15.5.

Mixed-Model Layouts. In mixed-model layouts, each edge is drawn in an orthogonal
fashion, except for a small area around its endpoints. The class MixedModelLayout repre-
sents the layout algorithm by Gutwenger and Mutzel [GM97], which is based upon ideas by
Kant [Kan96]. In particular, Kant’s algorithm has been changed concerning the placement
phase and the node boxes, which determine the routing of the incident edges around a node.
It has also been generalized to work for connected planar graphs.

This algorithm draws a d-planar graph G on a grid such that every edge has at most
three bends and the minimum angle between two edges is at least 2

d radians. The grid size
is at most (2n − 6) × (32n − 7

2) , the number of bends is at most 5n − 15, and every edge
has length O(n) if G has n nodes.

Similar to the planar straight-line drawing algorithms, MixedModelLayout is based on
a shelling order (shellingOrder module option) and an augmentation module is used to
ensure the required connectivity. It also performs an enhancement for the placement of
degree-one nodes, which are temporarily removed in a preprocessing step and later consid-
ered again when computing the node boxes. A further enhancement improves the draw-
ing of edge crossings when using MixedModelLayout within the planarization approach
(PlanarizationGridLayout). In this case, nodes representing crossings are drawn with
four 90◦ angles, which is not the case for the original version. Figures 15.4 and 15.5 also
show the corresponding mixed-model drawings of the graphs drawn with the planar straight-

15.4. GRAPH DRAWING ALGORITHMS 11

line methods.

Orthogonal Layouts. Orthogonal drawings represent edges as sequences of horizontal
and vertical line segments. Bends occur where these segments change directions. The
OGDF provides orthogonal layout algorithms for graphs without degree restrictions; these
are embedded in the planarization approach realized by PlanarizationLayout. Thereby,
the orthogonal layout algorithm receives as input a planarized representation of the possibly
non-planar input graph, i.e., a planar graph in which some nodes represent edge crossings.
By default, PlanarizationLayout uses OrthoLayout as layout algorithm. This is a vari-

ation of Tamassia’s bend minimizing algorithm [Tam87], generalized to work with graphs
of arbitrary node degrees. Tamassia’s algorithm requires a planar graph G of maximal
node degree four and a planar embedding Γ of G. Notice that pure orthogonal drawings
in which the nodes are mapped to points in the grid are only admissible for this class of
planar graphs. The computation of the layout follows the so-called topology-shape-metrics
approach, see, e.g., [DETT99a]. According to the given planar embedding Γ the algorithm
constructs a network in which a minimum-cost flow determines a bend-minimal represen-
tation of the orthogonal shape of G. In a last phase, a compaction module assigns lengths
to this representation and thus fixes the coordinates of the drawing.
The OGDF contains two implementations for orthogonal compaction. LongestPathCom-

paction relies on computing longest paths in the so-called constraint graphs, an underlying
pair of directed acyclic graphs that code placement relationships. FlowCompaction com-
putes a minimum-cost flow in a pair of dual graphs and results in shorter edge lengths.
Both algorithms rely on a dissection of the original face structures into rectangular faces.
In addition, a branch-and-cut approach that produces provably optimal solutions for the
two-dimensional compaction problem [KM99, Kla01] is in preparation.
In order to extend Tamassia’s algorithm to graphs of arbitrary node degree, OrthoLayout

uses ideas from quasi-orthogonal drawings [KM98] and Giotto layout [TDB88], combined
with a local orthogonal edge routing algorithm. The common idea is to replace high-degree
nodes by artificial faces which will be drawn as larger boxes in an intermediate drawing.
The node is then placed within this boxes and its incident edges are routed orthogonally
to the corresponding connection points on the surrounding box. An ER-diagram drawn by
using OrthoLayout with PlanarizationLayout is shown in Figure 15.6.
An alternative to OrthoLayout is KandinskyLayout which extends the basic approach

to graphs of arbitrary degree by allowing 0◦ angles between two successive edges adjacent
to a node. Nodes in a graph are modeled as square boxes of unified size placed on a coarse
grid, whereas edges are routed on a finer grid. Feasibility is achieved by maintaining the
so-called bend-or-end property: Let e1 and e2 be the two edges incident to the same side
of a node v in a Kandinsky drawing, e1 following e2 in the given embedding, and let f be
the face to which e1 and e2 are adjacent. Then either e1 must have a last bend with a 270◦

angle in f or e2 must have a first bend with 270◦ angle in f . See [FK96] for a detailed
description of the Kandinsky drawing model. The KandinskyLayout implementation does
not use an extension of the original bend-minimization flow network as described in [FK96]
to compute a shape for the input graph since this network has a flaw that may lead to
suboptimal solutions or not a feasible solution at all [Eig03]. Instead, an ILP formulation
is used, and hence KandinskyLayout requires COIN-OR.

15.4.2 Hierarchical Drawing Algorithms

Rooted Trees. The TreeLayout algorithm draws general trees in linear time. It is based
on an efficient implementation [BJL06] of Walker’s algorithm [RT81, Wal90] for drawing

12 CHAPTER 15. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

Project Protocol

Project Hybridization

Project Array Type

Protocols Parameters

Protocol Values

Protocol

Probe Seq

Probe

Probe Array Type

Array Type

Map

Probe DB

Rearray

Annotation Probe Seq

Probe Annotation EvidenceAnnotation

Url

Spot

Experiment Hybridization

Sample Attribute

Sample Attribute Sample Modifier Sample ModifierSample Value

Sample

Hybridization

Labled RNA

Experiment

Project User

User

Project

Logins

Project Sample

Pipe Log

Project Experiment

Analysis

Results

Data Analysis Data Hybridization Data

Results Data

Data ValuesData Parameters

Figure 15.6 An entity-relationship diagram drawn with the planarization approach and
OrthoLayout.

15.4. GRAPH DRAWING ALGORITHMS 13

Figure 15.7 A tree drawn with TreeLayout.
LayoutModule

TileToRowsCCPacker

AcyclicSubgraphModule

RankingModule

CCLayoutPackModule

GreedyCycleRemoval

DfsAcyclicSubgraph

<no_crossings>
SugiyamaLayout

ranking

crossMin

layout

packer

runs

transpose

TwoLayerCrossMin

BarycenterHeuris c

MedianHeuris c

Si!ingHeuris c

LongestPathRanking
subgraph

HierarchyLayoutModule

FastHierarchyLayout

Op malHierarchyLayout

Op malRanking
subgraph

CoffmanGrahamRanking
subgraph

SplitHeuris c

GreedyInsertHeuris c

GreedySwitchHeuris c

Figure 15.8 Sugiyama’s framework for hierarchical graph layout in the OGDF.

trees. In the resulting straight-line drawing nodes on the same level lie on a horizontal line.
The algorithm works recursively starting on the lowest level of the tree. In each step, the
subtrees of a tree node (that have been laid out already) are placed as closely to each other
as possible, resulting in a small size of the layout. TreeLayout also provides options for
choosing between orthogonal or straight-line edge routing style, for the orientation of the
layout (e.g., top to bottom or left to right), and for the selection of the root. Figure 15.7
shows an example drawing.

Sugiyama Framework. The OGDF provides a flexible implementation of Sugiyama’s
framework [STT81] for drawing directed graphs in a hierarchical fashion. This frame-
works basically consists of three phases, and for each phase various methods and vari-
ations have been proposed in the literature. The corresponding OGDF implementation
SugiyamaLayout provides a module option for each of the three phases; optionally, a pack-
ing module can be used to pack multiple connected components of the graph. The available
OGDF modules and their dependencies are shown in Figure 15.8.
The three phases in Sugiyama’s framework and their implementations are:

14 CHAPTER 15. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

1. Rank assignment: In the first phase (realized by a RankingModule), the nodes of
the input digraph G are assigned to layers. If G is not acyclic, then we compute a
preferably large acyclic subgraph and reverse the edges not contained in the sub-
graph by one of the modules described in Section 15.3.1. Currently, the OGDF
contains three algorithms for computing a layer assignment for an acyclic digraph
in which the edges are directed from nodes on a lower level to nodes on a higher
level. LongestPathRanking is based on the computation of longest paths and
minimizes the number of layers (height of the drawing), OptNodeRanking mini-
mizes the total edge length [GKNV93] (here the length of an edge is the number of
layers it spans), and CoffmanGrahamRanking computes a layer assignment with a
predefined maximum number of nodes on a layer (width of the drawing) [CG72].
If edges span several layers, they are split by inserting additional artificial nodes
such that edges connect only nodes on neighboring layers.

2. k-layer crossing minimization: The second phase determines permutations of the
nodes on each layer such that the number of edge crossings is small. The corre-
sponding optimization problem is NP-hard. A reasonable method consists of vis-
iting the layers from top to bottom, fixing the order of the nodes on the layer and
trying to find a permutation of the nodes on the lower next layer that minimizes
the number of crossings between edges connecting the two adjacent layers, also
referred to as two-layer crossing minimization (realized by a TwoLayerCrossMin

module). Then, the algorithm proceeds from bottom to top and so on until the
total number of crossings does not decrease anymore. SugiyamaLayout contains
a sophisticated implementation that uses further improvements like calling the
crossing minimization several times (controlled by the parameter runs) with dif-
ferent starting permutations, or applying the transpose heuristic described in
[GKNV93].
Several heuristics for two-layer crossing minimization have been proposed. The
library offers the choice between the barycenter heuristic [STT81], the weighted
median heuristic [GKNV93], the sifting heuristic [MSM00], as well as the split,
the greedy insert, and the greedy switch heuristics presented in [EK86].

3. Coordinates assignment: The third phase (realized by a HierarchyLayout-

Module) computes the final coordinates of the nodes and bend points of the
edges, respecting the layer assignment and ordering of the nodes on each layer.
The OGDF contains two implementations for the final coordinate assignment
phase. The first, OptimalHierarchyLayout, tries to let edges run as vertical as
possible by solving a linear program; the second, FastHierarchyLayout, pro-
posed by Buchheim, Jünger, and Leipert [BJL00] guarantees at most two bends
per edge and draws the whole part between these bends vertically.

Figure 15.9 shows a layered drawing produced by SugiyamaLayout using the LP-based
coordinate assignment method. The digraph displays the history of the UNIX operating
system and the layers correspond to the time line depicted on the right side3.

Upward Planarization. Though the commonly applied approach for hierarchical graph
drawing is based on the Sugiyama framework, there is a much better alternative that pro-
duces substantially less edge crossings. This alternative adapts the crossing minimization
procedure known from the planarization approach and is thus called upward planariza-

3Source: http://en.wikipedia.org/wiki/File:Unix history-simple.svg

15.4. GRAPH DRAWING ALGORITHMS 15

1993

1994

1995

1996

1998

2000

2004

2005

2006

UNIX32V 2BSD

3BSD 2.79BSD

4.1BSD

Unix System III Sun OS 1.0

4.1cBSD

Unix System V GNU

Unix Time-Sharing System 8

4.3BSD

Unix Time-Sharing System 9

SunOS 3.2 Minix 1.1

UNIX System V Release 4 4.3BSD Tahoe

Unix Time-Sharing System 10

4.3BSD Reno

Solaris 2 BSD Net/2 Linux 0.0.1

UnixWare 1.0 BSD/386 0.3.1 386BSD 0.0 GNU/Linux

386BSD 0.1

NetBSD 0.8

FreeBSD 1.0

SunOS 4.1.4 386BSD 1.0 4.4BSD-Lite

NetBSD 1.0

NetBSD 1.1 FreeBSD 2.04.4BSD-Lite Release 2

OpenBSD 2.0 2.11 BSD Patch 335

NetBSD 1.3 FreeBSD 3.0OpenBSD 2.3

2.11 BSD Patch 431

UnixWare 7.1.4 4.3 BSD-Quasijarus 0c

Solaris 10 NetBSD 3.0

FreeBSD 6.1OpenBSD 3.9 Minix 3.1.2GNU/Linux 2.6.16

1969

1971

1972

1973

1974

1975

1978

1979

1980

1981

UNIX-PDP7

Unix Time Sharing System 1

Unix Time Sharing System 2

Unix Time Sharing System 3

Unix Time Sharing System 4

PWB/UNIX Unix Time Sharing System 5

1982

Unix Time Sharing System 6

1983

1BSD

1985

Unix Time Sharing System 7

1986

1987

1988

1989

1990

1991

1992

Figure 15.9 A layered digraph illustrating the history of UNIX; each layer represents a
point in time. Drawn by applying Sugiyama layout and the LP-based coordinate assignment
with angle optimization and special node balancing.

16 CHAPTER 15. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

LayoutModule

FUPSSimple

AcyclicSubgraphModule

UpwardPlanarizerModule

FUPSModule

<no_crossings>
UpwardPlanariza onLayout

upwardPlanarizer

UPRLayout

UPRLayoutModule

SubgraphUpwardPlanarizer

subgraph

inserter

acyclicSubgraph

HierarchyLayoutModule

LayerBasedUPRLayout
ranking

layout

RankingModule

FixedEmbeddingUpwardEdgeInserter

UpwardEdgeInserterModule

<no_crossings>
VisibilityLayout

upwardPlanarizer

<no_crossings>
DominanceLayout

upwardPlanarizer

Figure 15.10 The upward planarization framework for hierarchical graph layout in the
OGDF; modules for ranking, hierarchy layout, and acyclic subgraphs are omitted and can
be found in Figure 15.8.

tion [CGMW10]. Like the traditional planarization approach for undirected graphs, the
algorithm consists of two steps: In the first step, a feasible upward planar subgraph U is
constructed; in the second step, the arcs not yet contained in U are inserted one-by-one so
that few crossings arise. These crossings are replaced by dummy nodes so that the digraph
in which arcs are inserted can always be considered upward planar. The final outcome of
this crossing minimization procedure is an upward planar representation; it can be turned
into a drawing of the original digraph by replacing the dummy nodes with arc crossings.

The upward planarization framework in the OGDF follows the presentations in [CGMW09]
and [CGMW10]; see Figure 15.10. The class UpwardPlanarizationLayout represents the
layout algorithm, which is implemented in two phases: The first phase realizes the upward
crossing minimization procedure and computes an upward planarized representation of the
input digraph; the second phase is realized by a UPRLayoutModule and computes the fi-
nal layout. Currently, the layout computation is implemented by reusing modules from
Sugiyama’s framework, namely the rank assignment and hierarchy layout modules.

The crossing minimization step, realized by an UpwardPlanarizerModule, is the heart
of the upward planarization. The OGDF modularizes this step similarly as for the pla-
narization approach. First, a feasible upward planar subgraph is computed by a FUPS-

Module, which is implemented by FUPSSimple, and then the remaining edges are inserted
by an UpwardEdgeInserterModule, implemented by applying a fixed embedding approach
(FixedEmbeddingUpwardEdgeInserter). Figure 15.11 compares two upward drawings of
the same digraph, one produced by the Sugiyama approach and the other one by apply-
ing upward planarization. Typically, Sugiyama drawings tend to become quite flat, thus
enforcing many crossings, whereas the upward planarization approach unfolds the digraph
well, thereby saving a lot of crossings and revealing the true structure of the digraph.

The crossing minimization step is also used by two further algorithms: VisibilityLayout
based on the computation of a visibility representation by Rosenstiehl and Tarjan [RT86]
and DominanceLayout based on dominance drawings of s-t-planar digraphs. An s-t-planar
digraph is a directed, acyclic planar graph G with exactly one source s and exactly one sink
t. DominanceLayout applies the layout algorithm for s-t-planar digraphs by Di Battista,
Tamassia, and Tollis [DTT92]. If the input digraph G contains no transitive edges, the
algorithm computes a planar dominance grid drawing of G, i.e., a straight-line embedding
such that, for any two nodes u and v, there is a directed path from u to v if and only
if x(u) ≤ x(v) and y(u) ≤ y(v). Dominance drawings characterize the transitive closure

15.4. GRAPH DRAWING ALGORITHMS 17

10

1

12

13

14

15

16 17

18

19

20 21

22

23 24

25

26

27 28

29

0

1

2

3

4 30

5

31

6

32

7

33

8

34

9

35

36

37

10

1

12

13

14

15

1617

18

19

2021

22

2324

25

26

27

28

29

0

1

2

3

4

30

5

31

6

32

7

33

8

34

9

35

36

37

Figure 15.11 Two upward drawings of the same graph, drawn with SugiyamaLayout

(left, 27 crossings) and UpwardPlanarizationLayout (right, 1 crossing).

18 CHAPTER 15. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

of a digraph by means of the geometric dominance relation among the nodes [DTT92]. If
G does contain transitive edges, the algorithm splits these edges by introducing artificial
nodes and computes a dominance drawing for the resulting digraph in which the artificial
nodes represent bend points.

15.4.3 Energy-based Drawing Algorithms

Energy-based drawing algorithms constitute the most common drawing approach for undi-
rected graphs. They are reasonably fast for medium sized graphs, intuitive to understand,
and easy to implement—at least in their basic versions. The fundamental underlying idea
of energy-based methods is to model the graph as a system of interacting objects that
contribute to the overall energy of the system, such that an energy-minimized state of the
system corresponds to a nice drawing of the graph. In order to achieve such an optimum,
an energy or cost function is minimized. There are various models and realizations for
this approach, and the flexibility in the definition of both the energy model and the objec-
tive function enables a wide range of optimization methods and applications. There is a
wealth of publications concerning energy-based layout methods; see [DETT99b, KW01] for
an overview and the comprehensive discussion in Chapter ??.

Single-level Algorithms. The OGDF provides implementations for several classical
algorithms, such as the force-directed spring embedder algorithm [Ead84], the grid-variant
of Fruchterman and Reingold [FR91] (SpringEmbedderFR), and the simulated annealing
approach by Davidson and Harel [DH96] (DavidsonHarelLayout). We also implemented
the energy-based approach by Kamada and Kawai [KK89] (SpringEmbedderKK), which uses
the shortest graph-theoretic distances as ideal pairwise distance values and subsequently
tries to obtain a drawing that minimizes the overall difference between ideal and current
distances. Further implementations include the GEM algorithm [FLM95] (GEMLayout) and
Tutte’s barycenter method [Tut63] (TutteLayout). All implementations of energy-based
drawing algorithms are directly derived from the class LayoutModule.

An important advantage of energy-based methods—based on the iterative nature of the
numerical methods for computing the layout—is that they provide an animation of the
change from a given layout to a new one, thus allowing us to use a given drawing as input. In
addition, these algorithms support stopping the computation when either the improvement
of successive steps falls under a certain threshold or as soon as a prespecified energy value
is reached. Our implementations therefore provide the corresponding interfaces to adjust
the respective parameters.

Multi-level Algorithms. In addition to these single level algorithms, the OGDF provides
a generic framework for the implementation of multilevel algorithms, realized by the class
ModularMultilevelMixer. Multilevel approaches can help to overcome local minima and
slow convergence problems of single level algorithms. Their result does not depend on the
quality of an initial layout, and they are well suited also for large graphs with up to tens or
even hundreds of thousands of nodes.

The multilevel framework allows us to obtain results similar to those of many different
multilevel layout realizations [Wal03, GK02, HJ04a]. Instead of implementing these versions
from scratch, only the main algorithmic phases— coarsening, placement, and single level
layout—have to be implemented or reused from existing realizations. The module concept
allows us to plug in these implementations into the framework, enabling also a comparison
of different combinations as demonstrated in [BGKM10]. Figure 15.12 shows two example
drawings of large graphs.

15.4. GRAPH DRAWING ALGORITHMS 19

Figure 15.12 Two drawings obtained with OGDF’s multilevel framework: graph data

(left; 2,851 nodes; 15,093 edges) and graph crack (right; 10,240 nodes; 30,380 edges).

On the one hand, the multilevel framework provides high flexibility for composing multi-
level approaches out of a variety of realizations for the different layout steps. On the other
hand, this modularity prohibits fine-tuning of specific combinations by adjusting the differ-
ent phases to each other. Therefore the OGDF also contains a dedicated implementation
of the fast multipole multilevel method (FMMMLayout) by Hachul and Jünger [HJ04b], as
well as an engineered and optimized version of this algorithm supporting multicore hard-
ware [Gro09] (FastMultipoleMultilevelEmbedder). Figure 15.13 shows a drawing of a
very large graph with 143,437 nodes, which was obtained—using this engineered version—
in just 2.1 seconds on an Intel Xeon E5430 (2.66GHz) quadcore machine.

15.4.4 Drawing Clustered Graphs

A clustered graph C = (G,T) is a tuple consisting of a graph G = (V,E) and a hierarchical
structuring T called cluster tree. Every node of V is assigned to exactly one inner node of
T , which is the cluster to which it belongs.
In the OGDF, a clustered graph C is represented by an instance of class ClusterGraph,

which stores the necessary information together with a reference to the underlying graph G.
The OGDF provides methods to test c-planarity of arbitrary clustered graphs and to draw
such graphs in either orthogonal or hierarchical style.

Orthogonal Layout. Similar to the planarization approach for general graphs, we imple-
mented the planarization approach for clustered graphs based on the method by Di Battista
et al. [DDM01], which is realized by the class ClusterPlanarizationLayout. This method
uses the topology-shape-metrics approach and is suitable only for c-connected clustered
graphs, i.e., clustered graphs with the property that every subgraph induced by the nodes
of some cluster c and its subclusters is connected.
The cluster planarization algorithm works as follows: First, we calculate a minimum

spanning tree for each cluster, thereby treating its subclusters as simple nodes. Afterwards
these trees are joined together. We start to insert the remaining edges one after another if
this is possible without introducing any crossings. We call the resulting graph the maximal
planar cluster subgraph G′. Hence, after this step there generally remains a set of edges

20 CHAPTER 15. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

Figure 15.13 The graph fe ocean (143,437 nodes; 409,593 edges) drawn with the Fast-
MultipoleMultilevelEmbedder in 2.1 seconds.

which could not yet be inserted.
We apply the following steps for every edge e = (u, v) that still has to be inserted: We

generate a dual graph D with the following properties: faces within the same cluster are
joined by bidirectional arcs. Arcs between faces of different clusters are only generated if
these clusters are on the path between u and v in T . The direction of such arcs is chosen
accordingly. Finally we add arcs from u to all of its incident faces, and arcs from all faces
incident to v, to v. Then we search for the shortest path between u and v in D and generate
edge crossings according to the used arcs.
Thanks to the OGDF’s modularity we can easily reuse all available code concerning bend

minimization and compaction—originally only intended for planar graphs—without a single
change.
In order to also cope with non-c-connected clustered graphs, the OGDF provides two quite

different approaches: As a simple and fast heuristic, non-connected clusters are made con-
nected by temporarily adding single dummy edges between the components of the induced
subgraphs. A much more sophisticated approach is implemented by the class Maximum-

CPlanarSubgraph: This class applies a branch-and-cut approach that computes the maxi-
mum c-planar subgraph of a clustered graph [CGJ+08]. The result can be used for the first
step of the cluster planarization approach and at the same time also constitutes the first
practical c-planarity testing algorithm for arbitrary (i.e., also non-c-connected) clustered
graphs. The branch-and-cut approach is based on the result that every c-planar clustered
graph can be augmented to a completely connected clustered graph, i.e., where for each clus-
ter both the cluster and its complement are connected [CW06]. As the call function also
returns the set of edges that is eventually added to achieve c-connectivity, these edges can
be used in order to make the input graph c-connected, allowing us to apply the planarization
and drawing approach without adding unnecessary crossings.
Figure 15.14 shows an example drawing of a c-planar (but not c-connected) clustered

15.5. SUCCESS STORIES 21

Send

Invoice

Receive

Payment

G/L

Interface

Sales

Order

customer

exists

Create

Customer

Get Customer

from System

Create

Order

Item

exists

Create item
Get item

ID

Enter Order

Lines

Credit Check

Order Entry

Inventory

Accounts Receivables

pass C.C. ?

Work in Progress

Extend

Credit Limit

Purchasing

Book Order

Create Shop

Floor Jobs

Create Item

Demand

all items

available

Get Items

from Stock

Create

P/O

Close

Jobs

Put final

Goods in FGI

Close Order

Lines

Ship

Goods

Close

Order
A/R Interface

Figure 15.14 A clustered graph drawn in orthogonal style with ClusterPlanarization-

Layout.

graph, obtained with ClusterPlanarizationLayout and the simple heuristic for making
the clustered graph c-connected.

Hierarchical Layout. For drawing directed graphs with an additional cluster structure
in a hierarchical style, SugiyamaLayout provides an additional call method. This methods
implements a cluster hierarchical layout algorithm that is based on Sugiyama’s framework as
described by Sanders [San96a, San96b] and applies improvements for the crossing reduction
strategy proposed by Schreiber [Sch01] and Forster [For02].

Though this approach would also allow us to draw compound graphs, i.e., a generaliza-
tion of clustered graphs where edges can also be attached at clusters, the implementation
currently supports only clustered graphs. The reason is that there is yet no representation
of compound graphs in the OGDF; it will be added in a future release.

15.5 Success Stories

This section showcases some outstanding implementations in the OGDF and the story
behind their development. These are also good examples for demonstrating design decisions
and engineering aspect.

22 CHAPTER 15. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

15.5.1 SPQR-Trees

In the early 1970s, Hopcroft and Tarjan [HT73a] published the first linear-time algorithm
for computing the triconnected components of a graph. This decomposition is in particular
important in graph drawing—here usually known as the data structure SPQR-tree—, as it
allows us to encode all planar embedding of a graph. Hence, this algorithm has been cited
over and over again for showing that SPQR-trees can be constructed in linear time. However,
for a long time nobody was able to come up with an implementation of this algorithm, since
the paper was hard to understand and contained various flaws, thus preventing a straight-
forward implementation.

This situation is a classical example for showing the need of publicly available reference
implementations, revealing all the algorithmic details and simplifying the application of
the algorithm. A break-through was achieved in the early 2000s—almost 20 years after the
publication of the algorithm—by Gutwenger and Mutzel [GM01]. They described how to fix
the flaws in the Hopcroft and Tarjan algorithm, and also provided a stable implementation
of SPQR-trees in the AGD library. This implementation is now part of the OGDF and thus
open source, allowing everybody to study and understand it. Since this implementation is
publicly available, we observed a lot of interest in it, ranging from applications that just
apply the data structure to re-implementations, e.g., in other programming languages.

15.5.2 Exact Crossing Minimization

One of the most challenging problems in graph drawing is the crossing number problem,
i.e.: What is the minimum number of edge crossings required when drawing a given graph?
See Chapter ?? for an extensive introduction to this topic. For a long time, no exact
algorithms existed that could compute the crossing number for at least some interesting
graphs in practice. The classical benchmark instances for evaluating crossing minimization
algorithms are the Rome graphs, a benchmark set of quite sparse graphs with up to 100
nodes. The first approach that could compute the exact solutions for a handful of interesting
Rome graphs was based on an ILP formulation presented by Buchheim et al. [BEJ+05] and
implemented using AGD and CPLEX. In the following years, this approach was revised and
reimplemented using the OGDF by Chimani et al. [BCE+08, CGM09], and the resulting
implementation was able to solve many more graphs. The key ideas were to use branch-
and-cut-and-price (by applying the ABACUS framework) and better primal heuristics (the
planarization approach provided by the OGDF). The currently best algorithm for exact
crossing minimization [Chi08, CMB08] is also implemented using the OGDF, and now
allows us to solve the majority of Rome graphs exactly.

This example demonstrates how the OGDF’s modular design supports the development
of new algorithms. Here, the planarization approach (see Section 15.3.3) is used as pri-
mal heuristic, as well as other important components like testing planarity, extraction of
Kuratowski subdivisions [CMS08], and the non-planar core reduction [CG09] as a prepro-
cessing strategy. It also shows that exact algorithms based on ILP formulations require
additional frameworks providing an LP-solver and support for the design and implemen-
tation of branch-and-cut(-and-price) algorithms. Hence, we decided to (optionally) use
the libraries COIN-OR as LP-solver interface (which also allows us to choose CPLEX as
LP-solver) and ABACUS in the OGDF.

15.5. SUCCESS STORIES 23

15.5.3 Upward Graph Drawing

The classical approach for upward drawing of acyclic digraphs is Sugiyama’s framework,
which was already proposed in the early 1980s. The first step of this framework layers the
graph, and the subsequent steps ensure that each node is finally placed on its assigned layer.
It is well known that such a fix layer assignment forces unnecessary crossings in the drawing,
but the Sugiyama framework is still widely used. A breakthrough in upward crossing mini-
mization was recently achieved by Chimani et al. [CGMW08, CGMW09, CGMW10]. They
propose a new method for upward crossing minimization that does not need to layer the
graph and report on substantial reduction in crossings (compared to Sugiyama’s framework
and other approaches) for commonly used benchmark graphs.
They developed this new approach using the OGDF and made use of the OGDF’s modular

design by reusing some of the modules from Sugiyama’s framework (see also Figure 15.10), as
well as sophisticated algorithms like upward planarity testing for sT -digraphs. Within their
experimental study, they could apply the OGDF’s Sugiyama layout algorithm providing
state-of-the-art crossing minimization heuristics for the layered approach. The resulting
implementation is also modularized and thus allows us to easily replace particular phases
of the algorithm with alternative implementations.
This example demonstrates how the OGDF helps in developing alternative approaches,

and how new frameworks can be established such that other users can easily experiment
with it and modify some of the phases.

Acknowledgement

The OGDF, as it is today, is by far not only the product of the authors of this chap-
ter. It benefits from contributions of many additional supporters, in alphabetical order:4

Dino Ahr, Gereon Bartel, Christoph Buchheim, Tobias Dehling, Martin Gronemann, Ste-
fan Hachul, Mathias Jansen, Thorsten Kerkhof, Joachim Kupke, Sebastian Leipert, Daniel
Lückerath, Jan Papenfuß, Gerhard Reinelt, Till Schäfer, Jens Schmidt, Michael Schulz,
Andrea Wagner, René Weiskircher, Hoi-Ming Wong, Bernd Zey.

4See also http://www.ogdf.net/doku.php/team:about for an up-to-date list.

Bibliography

[AGMN97] D. Alberts, C. Gutwenger, P. Mutzel, and S. Näher. AGD-library: A library

of algorithms for graph drawing. In Proc. WAE ’97, pages 112–123, 1997.
[BCE+08] C. Buchheim, M. Chimani, D. Ebner, C. Gutwenger, M. Jünger, G. W. Klau,

P. Mutzel, and R. Weiskircher. A branch-and-cut approach to the crossing

number problem. Discrete Optimization, Special Issue in Memory of George
B. Dantzig, 5(2):373–388, 2008.

[BDMT98] P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia. Optimal upward

planarity testing of single-source digraphs. SIAM J. Comput., 27(1):132–169,
1998.

[BEJ+05] C. Buchheim, D. Ebner, M. Jünger, P. Mutzel, and R. Weiskircher. Exact

crossing minimization. In P. Eades and P. Healy, editors, Graph Drawing
(Proc. GD ’05), Lecture Notes in Computer Science. Springer-Verlag, 2005.

To appear.

[BGKM10] G. Bartel, C. Gutwenger, K. Klein, and P. Mutzel. An experimental evaluation

of multilevel layout methods. In 18th International Symposium on Graph
Drawing 2010 (GD10), number 6502 in LNCS, pages 80–91. Springer-Verlag,

2010.

[BJL00] C. Buchheim, M. Jünger, and S. Leipert. Fast layout algorithm for k-level
graphs. In J. Marks, editor, Proc. Graph Drawing 2000, volume 1984 of

LNCS, pages 229–240. Springer, 2000.
[BJL06] C. Buchheim, M. Jünger, and S. Leipert. Drawing rooted trees in linear time.

Software: Practice and Experience, 36(6):651–665, 2006.
[BL76] K. Booth and G. Lueker. Testing for the consecutive ones property interval

graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci.,
13:335–379, 1976.

[BM04] J. M. Boyer and W. Myrvold. On the cutting edge: simplified o(n) planarity

by edge addition. J. Graph Algorithms Appl., 8(3):241–273, 2004.
[CG72] E. G. Coffman and R. L. Graham. Optimal scheduling for two processor

systems. Acta Informatica, 1:200–213, 1972.
[CG09] M. Chimani and C. Gutwenger. Non-planar core reduction of graphs. Discrete

Mathematics, 309(7):1838–1855, 2009.
[CGJ+08] M. Chimani, C. Gutwenger, M. Jansen, K. Klein, and P. Mutzel. Computing

maximum c-planar subgraphs. In I. G. Tollis and M. Patrignani, editors, Graph
Drawing, volume 5417 of Lecture Notes in Computer Science, pages 114–120.
Springer, 2008.

[CGM09] M. Chimani, C. Gutwenger, and P. Mutzel. Experiments on exact crossing

minimization using column generation. ACM Journal of Experimental Algo-
rithmics, 14(3):4.1–4.18, 2009.

[CGMW08] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Layer-free upward

crossing minimization. In C. McGeoch, editor, Proceedings of the 7th In-
ternational Symposium on Graph Drawing (WEA 2008), volume 5038 of

Lecture Notes in Computer Science, pages 55–68. Springer-Verlag, 2008.
[CGMW09] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Upward planarization

layout. In D. Eppstein and E. Gansner, editors, Proceedings of the 17th

0-8493-8597-0/01/$0.00+$1.50
c⃝ 2004 by CRC Press, LLC 1

2 CHAPTER 15. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

Symposium on Graph Drawing 2009 (GD 2009), volume 5849 of Lecture
Notes in Computer Science, pages 94–106. Springer-Verlag, 2009.

[CGMW10] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Layer-free upward

crossing minimization. ACM Journal of Experimental Algorithmics, 15:Ar-

ticle No. 2.2, 2010.

[Chi08] M. Chimani. Computing crossing numbers. PhD thesis, TU Dortmund, 2008.

http://hdl.handle.net/2003/25955.

[CMB08] M. Chimani, P. Mutzel, and I. Bomze. A new approach to exact crossing min-

imization. In Proc. ESA ’08, volume 5193 of LNCS, pages 284–296. Springer,
2008.

[CMS08] M. Chimani, P. Mutzel, and J. M. Schmidt. Efficient extraction of multiple

Kuratowski subdivisions. In Proc. GD ’07, volume 4875 of LNCS, pages

159–170. Springer, 2008.

[CNAO85] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for em-

bedding planar graphs using PQ-trees. J. Comput. Syst. Sci., 30(1):54–76,
1985.

[CW06] S. Cornelsen and D. Wagner. Completely connected clustered graphs. J.
Discrete Algorithms, 4(2):313–323, 2006.

[DDM01] G. Di Battista, W. Didimo, and A. Marcandalli. Planarization of clustered

graphs. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing,
volume 2265 of Lecture Notes in Computer Science, pages 60–74. Springer,

2001.

[DETT99a] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[DETT99b] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, 1999.

[DH96] R. Davidson and D. Harel. Drawing graphs nicely using simulated annealing.

ACM Trans. Graph., 15(4):301–331, 1996.
[DT89] G. Di Battista and R. Tamassia. Incremental planarity testing. In Proc. 30th

Annu. IEEE Sympos. Found. Comput. Sci., pages 436–441, 1989.
[DT96] G. Di Battista and R. Tamassia. On-line maintenance of triconnected compo-

nents with SPQR-trees. Algorithmica, 15:302–318, 1996.
[DTT92] G. Di Battista, R. Tamassia, and I. G. Tollis. Constrained visibility represen-

tations of graphs. Inform. Process. Lett., 41:1–7, 1992.
[Ead84] P. A. Eades. A heuristic for graph drawing. In Congressus Numerantium,

volume 42, pages 149–160, 1984.

[Eig03] M. Eiglsperger. Automatic Layout of UML Class Diagrams: A
Topology-Shape-Metrics Approach. Phd-thesis, Eberhardt-Karl-Universität

(Tübingen), 2003.

[EK86] P. Eades and D. Kelly. Heuristics for reducing crossings in 2-layered networks.

Ars Combinatoria, 21(A):89–98, 1986.

[EL95] P. Eades and X. Lin. A new heuristic for the feedback arc set problem. Aus-
tralian Journal of Combinatorics, 12:15–26, 1995.

[FK96] U. Fössmeier and M. Kaufmann. Drawing high degree graphs with low bend

number. In Graph Drawing (Proc. GD ’95), Lecture Notes in Computer

Science. Springer-Verlag, 1996.

[FLM95] A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm for

undirected graphs. In GD ’94: Proceedings of the DIMACS International
Workshop on Graph Drawing, pages 388–403, London, UK, 1995. Springer-

Verlag.

15.5. SUCCESS STORIES 3

[FM98] S. Fialko and P. Mutzel. A new approximation algorithm for the planar aug-

mentation problem. In Proceedings of the Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’98), pages 260–269, San Francisco,

California, 1998. ACM Press.

[For02] M. Forster. Applying crossing reduction strategies to layered compound

graphs. In S. G. Kobourov and M. T. Goodrich, editors, Graph Drawing,
volume 2528 of Lecture Notes in Computer Science, pages 276–284. Springer,
2002.

[FR91] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed

placement. Softw. Pract. Exper., 21(11):1129–1164, 1991.
[GK02] P. Gajer and S. G. Kobourov. GRIP: Graph drawing with intelligent place-

ment. J. Graph Algorithms Appl., 6(3):203–224, 2002.
[GKNV93] E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A technique for

drawing directed graphs. IEEE Trans. Softw. Eng., 19:214–230, 1993.
[GM97] C. Gutwenger and P. Mutzel. Grid embedding of biconnected planar graphs.

Extended Abstract, Max-Planck-Institut für Informatik, Saarbrücken, Ger-

many, 1997.

[GM01] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR trees. In

J. Marks, editor, Proceedings of the 8th International Symposium on Graph
Drawing (GD 2000), volume 1984 of Lecture Notes in Computer Science,
pages 77–90. Springer-Verlag, 2001.

[GM03] C. Gutwenger and P. Mutzel. Graph embedding with minimum depth and

maximum external face. In G. Liotta, editor, 11th Symposium on Graph
Drawing 2003, Perugia, volume 2912 of Lecture Notes in Computer Science,
pages 259–272. Springer-Verlag, 2003.

[GMW05] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar

graph. Algorithmica, 41(4):289–308, 2005.
[GMZ09a] C. Gutwenger, P. Mutzel, and B. Zey. On the hardness and approximability

of planar biconnectivity augmentation. In H. Q. Ngo, editor, Proceedings of
the 15th Annual International Computing and Combinatorics Conference
2009, volume 5609 of Lecture Notes in Computer Science, pages 249–257.

Springer-Verlag, 2009.

[GMZ09b] C. Gutwenger, P. Mutzel, and B. Zey. Planar biconnectivity augmentation with

fixed embedding. In J. Fiala, J. Kratochvl, and M. Miller, editors, Proceedings
of the 20th International Workshop on Combinatorial Algorithms 2009,
volume 5874 of Lecture Notes in Computer Science, pages 289–300. Springer-
Verlag, 2009.

[Gro09] M. Gronemann. Engineering the fast-multipole-multilevel method for multi-

core and SIMD architectures. Master’s thesis, Technische Universität Dort-

mund, 2009.

[GT01] A. Garg and R. Tamassia. On the computational complexity of upward and

rectilinear planarity testing. SIAM J. Comput., 31(2):601–625, 2001.
[Gut10] C. Gutwenger. Application of SPQR-Trees in the Planarization Approach

for Drawing Graphs. PhD thesis, Technische Universität Dortmund, Germany,

Fakultät für Informatik, 2010.

[HJ04a] S. Hachul and M. Jünger. Drawing large graphs with a potential-field-based

multilevel algorithm. In Janos Pach, editor, Proc. Graph Drawing 2004,
volume 3383 of LNCS, pages 285–295. Springer-Verlag, 2004.

[HJ04b] S. Hachul and M. Jünger. Drawing large graphs with a potential-field-based

multilevel algorithm. In Janos Pach, editor, Proc. Graph Drawing 2004,

4 CHAPTER 15. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

volume 3383 of LNCS, pages 285–295. Springer-Verlag, 2004.
[HT73a] J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components.

SIAM J. Comput., 2(3):135–158, 1973.
[HT73b] J. E. Hopcroft and R. E. Tarjan. Efficient algorithms for graph manipulation.

Communications of the ACM, 16(6):372–378, 1973.

[JLM98] M. Jünger, S. Leipert, and P. Mutzel. A note on computing a maximal planar

subgraph using PQ-trees. IEEE Transactions on Computer-Aided Design,
17(7):609–612, 1998.

[JT00] M. Jünger and S. Thienel. The ABACUS system for branch-and-cut-

and-price algorithms in integer programming and combinatorial optimiza-

tion. Software: Practice and Experience, 30:1325–1352, 2000. See also

http://www.informatik.uni-koeln.de/abacus/.

[JTS89] R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy. O(n2) algorithms for

graph planarization. IEEE Trans. Comp.-Aided Design, 8:257–267, 1989.
[Kan96] G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica,

16:4–32, 1996. (special issue on Graph Drawing, edited by G. Di Battista and

R. Tamassia).

[KB91] G. Kant and H. L. Bodlaender. Planar graph augmentation problems. In Proc.
WADS ’91, volume 519 of LNCS, pages 286–298. Springer, 1991.

[Ker07] T. Kerkhof. Algorithmen zur Bestimmung von guten Graph-Einbettungen für

orthogonale Zeichnungen. Master’s thesis, University of Dortmund, 2007.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.

Information Processing Letters, 31(1):7–15, 1989.
[Kla01] G. W. Klau. A Combinatorial Approach to Orthogonal Placement Problems.

PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, Fachbereich

Informatik, Technische Fakultät I, 2001.

[KM98] G. W. Klau and P. Mutzel. Quasi-orthogonal drawing of planar graphs. Techni-

cal Report MPI-I-98-1-013, Max Planck Institut für Informatik, Saarbrücken,

Germany, 1998.

[KM99] G. W. Klau and P. Mutzel. Optimal compaction of orthogonal grid drawings.

In G. Cornuejols, R. E. Burkard, and G. J. Woeginger, editors, Integer Pro-
gramming and Combinatorial Optimization, volume 1610 of Lecture Notes
Comput. Sci., pages 304–319. Springer-Verlag, 1999.

[KW01] M. Kaufmann and D. Wagner, editors. Drawing Graphs, volume 2025 of

LNCS. Springer-Verlag, 2001.
[LEC67] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing

of graphs. In Theory of Graphs: Internat. Symposium (Rome 1966), pages
215–232, New York, 1967. Gordon and Breach.

[Mar10] K. Martin. Tutorial: COIN-OR: Software for the OR community. Interfaces,
40(6):465–476, 2010. See also http://www.coin-or.org.

[MN99] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Ge-
ometric Computing. Cambridge University Press, 1999.

[MSM00] C. Matuszewski, R. Schönfeld, and P. Molitor. Using sifting for k-layer crossing

minimization. In Graph Drawing (Proc. GD ’99), Lecture Notes in Computer

Science. Springer-Verlag, 2000. to appear.

[PT00] M. Pizzonia and R. Tamassia. Minimum depth graph embedding. In M. Pa-

terson, editor, Proceedings of the 8th Annual European Symposium on Al-
gorithms (ESA 2000), volume 1879 of Lecture Notes in Computer Science,
pages 356–367. Springer-Verlag, 2000.

[RT81] E. Reingold and J. Tilford. Tidier drawing of trees. IEEE Trans. Softw. Eng.,

15.5. SUCCESS STORIES 5

SE-7(2):223–228, 1981.

[RT86] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orien-

tations of planar graphs. Discrete Comput. Geom., 1(4):343–353, 1986.
[San96a] G. Sander. Layout of compound directed graphs. Technical Report A/03/96,

Universität Saarbrücken, 1996.

[San96b] G. Sander. Visualisierungstechniken für den Compilerbau. PhD thesis, Uni-

versität Saarbrücken, Germany, 1996.

[Sch01] F. Schreiber. Visualisierung biochemischer Reaktionsnetze. PhD thesis, Uni-

versität Passau, Germany, 2001.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of

hierarchical systems. IEEE Trans. Syst. Man Cybern., SMC-11(2):109–125,

1981.

[Tam87] R. Tamassia. On embedding a graph in the grid with the minimum number of

bends. SIAM J. Comput., 16(3):421–444, 1987.
[Tar72] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Com-

put., 1(2):146–160, 1972.
[TDB88] R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and

readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61–79,

1988.

[Tut63] W. T. Tutte. How to draw a graph. Proc Lond Math Soc, 13:743–767, 1963.
[Wal90] J. Q. Walker II. A node-positioning algorithm for general trees. Softw. –

Pract. Exp., 20(7):685–705, 1990.
[Wal03] C. Walshaw. A multilevel algorithm for force-directed graph-drawing. J. Graph

Algorithms Appl., 7(3):253–285, 2003.
[WT92] J. Westbrook and R. E. Tarjan. Maintaining bridge-connected and biconnected

components on-line. Algorithmica, 7:433–464, 1992.

Index

ABACUS, 4, 22
acyclic subgraph, 5
AGD, 2, 22
augmentation, 5

biconnected, 5
fixed embedding, 5
planar biconnected, 5

barycenter heuristic, 14
BC-tree, 6

dynamic, 6
biconnected components, 6
block tree, 5
block-nesting depth, 8

c-connected, 19
c-planarity, 19
canonical order, 9
cluster tree, 19
clustered graph, 19
COIN-OR, 4, 22
compaction, 11
compound graph, 21
constraint graph, 11
convex faces, 9
coordinates assignment, 14
crossing minimization, 6

2-layer, 14
k-layer, 14
upward, 16, 23

crossing number problem, 22

dominance drawings, 16

edge insertion, 8
fixed embedding, 8
upward, 16
variable embedding, 8

fast multipole multilevel embedder, 19
fast multipole multilevel method (FM3), 19
feedback arc set, 5

GEM algorithm, 18
gml2pic, 4
greedy insert heuristic, 14
greedy switch heuristic, 14

grid-variant, 18

Kandinsky layout, 11
Kuratowski subdivision, 22

maximum planar subgraph problem, 8
median heuristic, 14
mixed-model layouts, 10
module options, 3
module types, 3
modules, 3
multilevel algorithms, 18

non-planar core, 22

OGDF, 1–23
OGML, 4
Open Graph Drawing Framework, 1
Open Graph Markup Language, 4
orthogonal layouts, 11

bend minimization, 11

planar augmentation problem, 5
planar embedding

maximal external face, 8
minimal block-nesting depth, 8

planar layout, 9
straight-line, 9

planar subgraphs, 8
planarity testing, 6
planarization approach, 11, 22

clustered graphs, 19
PQ-trees, 6

quasi-orthogonal layouts, 11

rank assignment, 14
ranking

Coffman-Graham, 14
longest paths, 14
optimal, 14

Rome graphs, 22

shelling order, 9
sifting heuristic, 14
simulated annealing, 18
skeleton, 6
split heuristic, 14

6

INDEX 7

SPQR-tree, 6, 22
dynamic, 6

spring embedder, 18
s-t-planar digraph, 16
Sugiyama’s framework, 13, 21, 23

topology-shape-metrics approach, 11, 19
tree layouts, 11
triconnected components, 6, 22
Tutte’s barycenter method, 18

upward planar representation, 16
upward planar subgraphs

feasible, 16
upward planarity testing

sT -digraphs, 8, 23
upward planarization, 14

visibility representation, 16

